There is a need for timely, accurate diagnosis, and personalised management in lung diseases. Exhaled breath reflects inflammatory and metabolic processes in the human body, especially in the lungs. The analysis of exhaled breath using electronic nose (eNose) technology has gained increasing attention in the past years. This technique has great potential to be used in clinical practice as a real-time non-invasive diagnostic tool, and for monitoring disease course and therapeutic effects. To date, multiple eNoses have been developed and evaluated in clinical studies across a wide spectrum of lung diseases, mainly for diagnostic purposes. Heterogeneity in study design, analysis techniques, and differences between eNose devices currently hamper generalization and comparison of study results. Moreover, many pilot studies have been performed, while validation and implementation studies are scarce. These studies are needed before implementation in clinical practice can be realised. This review summarises the technical aspects of available eNose devices and the available evidence for clinical application of eNose technology in different lung diseases. Furthermore, recommendations for future research to pave the way for clinical implementation of eNose technology are provided.
Keywords: Breath analysis; Electronic nose; Machine learning; Personalised medicine; Respiratory medicine; Sensor technology.
© 2021. The Author(s).