Doxorubicin (DOX) is known to cause cognitive impairments in patients submitted to long-term chemotherapy (deficits also known as chemobrain). Therefore, there is an urgent need for therapeutic strategies capable of returning cancer survivors back to their previous quality of life. The present study investigated whether resveratrol (RSV) or curcumin (CUR) administration could affect mnemonic function and brain morphological changes following DOX administration in rats. Male Wistar rats were divided into 4 groups: DOX group (2.5 mg/kg/week for 4 weeks, i.p., plus distilled water for 28 days, oral gavage - OG), DOX + RSV group (DOX, 2.5 mg/kg/week for 4 weeks, i.p., plus RSV, 10 mg/kg/day for 28 days, OG), DOX + CUR group (DOX, 2.5 mg/kg/week for 4 weeks, i.p., plus CUR, 100 mg/kg/day for 28 days, OG) and control (CTR) group (0.9% saline solution weekly for 4 weeks, i.p., plus distilled water for 28 days, OG). Behavioral analyses (open field - OF - and the novel object recognition test - NORT) were performed. Brains were collected and analyzed by hematoxylin-eosin and luxol fast blue staining techniques and by immunohistochemistry for GFAP (glial fibrillary acidic protein) expression in astrocytes and Iba1 (ionized calcium-binding adaptor molecule 1) expression in microglia. DOX-injected rats presented short-term and long-term memory impairments as seen in the NORT at 3 and 24 h after habituation and increased GFAP and Iba1 expression, respectively, in astrocytes and microglia of the frontal cortex, hypothalamus and hippocampus. Such cognitive deficits were prevented by CUR at both periods and by RSV at 24 h. DOX-induced astrogliosis and microgliosis were avoided by RSV and CUR. No signs of demyelination or neuronal loss were found in any group. Thus, CUR and RSV prevented memory loss, astrogliosis and microgliosis induced by DOX monotherapy.
Keywords: Astrocytes; Chemotherapy; Glial fibrillary acidic protein; Memory impairment; Microglia.
Copyright © 2021 Elsevier Ltd. All rights reserved.