Plant immune networks

Trends Plant Sci. 2022 Mar;27(3):255-273. doi: 10.1016/j.tplants.2021.08.012. Epub 2021 Sep 18.

Abstract

Plants have both cell-surface and intracellular receptors to recognize diverse self- and non-self molecules. Cell-surface pattern recognition receptors (PRRs) recognize extracellular pathogen-/damage-derived molecules or apoplastic pathogen-derived effectors. Intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) recognize pathogen effectors. Activation of both PRRs and NLRs elevates defense gene expression and accumulation of the phytohormone salicylic acid (SA), which results in SA-dependent transcriptional reprogramming. These receptors, together with their coreceptors, form networks to mediate downstream immune responses. In addition, cell-surface and intracellular immune systems are interdependent and function synergistically to provide robust resistance against pathogens. Here, we summarize the interactions between these immune systems and attempt to provide a holistic picture of plant immune networks. We highlight current challenges and discuss potential new research directions.

Keywords: crosstalk; effector-triggered immunity (ETI); network; pattern-triggered immunity (PTI); plant immunity; salicylic acid.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Plant Diseases* / genetics
  • Plant Immunity* / genetics
  • Plants / genetics
  • Receptors, Pattern Recognition / genetics

Substances

  • Receptors, Pattern Recognition