Lean in one way, in obesity another: effects of moderate exercise in brown adipose tissue of early overfed male Wistar rats

Int J Obes (Lond). 2022 Jan;46(1):137-143. doi: 10.1038/s41366-021-00969-1. Epub 2021 Sep 22.

Abstract

Background: Early postnatal overfeeding (PO) induces long-term overweight and reduces brown adipose tissue (BAT) thermogenesis. Exercise has been suggested as a possible intervention to increase BAT function. In this study, we investigated chronical effects of moderate-intensity exercise in BAT function in postnatal overfed male Wistar rats METHODS: Litters' delivery was on postnatal-day 0 - PN0. At PN2, litters were adjusted to nine (normal litter - NL) or three pups (small litter - SL) per dam. Animals were weaned on PN21 and in PN30 randomly divided into sedentary (NL-Sed and SL-Sed) or exercised (NL-Exe and SL-Exe), N of 14 litters per group. Exercise protocol started (PN30) with an effort test; training sessions were performed three times weekly at 60% of the VO2max achieved in effort test, until PN80. On PN81, a temperature transponder was implanted beneath the interscapular BAT, whose temperature was assessed in periods of lights-on and -off from PN87 to PN90. Sympathetic nerve activation of BAT was registered at PN90. Animals were euthanized at PN91 and tissues collected RESULTS: PO impaired BAT thermogenesis in lights-on (pPO < 0.0001) and -off (pPO < 0.01). Exercise increased BAT temperature in lights-on (pExe < 0.0001). In NL-Exe, increased BAT activity was associated with higher sympathetic activity (pExe < 0.05), β3-AR (pExe < 0.001), and UCP1 (pExe < 0.001) content. In SL-Exe, increasing BAT thermogenesis is driven by a combination of tissue morphology remodeling (pExe < 0.0001) with greater effect in increasing UCP1 (pExe < 0.001) and increased β3-AR (pExe < 0.001) content.

Conclusion: Moderate exercise chronically increased BAT thermogenesis in both, NL and SL groups. In NL-Exe by increasing Sympathetic activity, and in SL-Exe by a combination of increased β3-AR and UCP1 content with morphologic remodeling of BAT. Chronically increasing BAT thermogenesis in obese subjects may lead to higher overall energy expenditure, favoring the reduction of obesity and related comorbidities.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue, Brown / metabolism*
  • Animals
  • Brazil
  • Disease Models, Animal
  • Mice
  • Obesity / diagnosis
  • Obesity / physiopathology*
  • Physical Conditioning, Animal / methods
  • Physical Conditioning, Animal / physiology*
  • Rats
  • Rats, Wistar / growth & development
  • Rats, Wistar / metabolism