Cytoplasmic male sterility (CMS) is a maternally inherited trait that derives from the inability to produce functional pollen in higher plants. CMS results from recombination of the mitochondrial genome. However, understanding of the molecular mechanism of CMS in pepper is limited. In this study, comparative transcriptomic analyses were performed using a near-isogenic CMS line 14A (CMS-14A) and a maintainer line 14B (ML-14B) as experimental materials. A total of 17,349 differentially expressed genes were detected between CMS-14A and ML-14B at the PMC meiosis stage. Among them, six unigenes associated with CMS and 108 unigenes involved in energy metabolism were identified. The gene orf165 was found in CMS-14A. When orf165 was introduced into ML-14B, almost 30% of transgenic plants were CMS. In addition, orf165 expression in transgenic CMS plants resulted in abnormal function of some genes involved in energy metabolism. When orf165 in transgenic CMS plant was silenced, the resulted orf165-silenced plant was male fertile and the expression patterns of some genes associated with energy metabolism were similar to ML-14B. Thus, we confirmed that orf165 influenced CMS in pepper.