The biogenesis of autophagosomes provides the basis for macroautophagy to capture and degrade intracellular cargoes. Binding of the autophagy-related protein ATG8/LC3 to autophagic membranes is essential to autophagosome formation, which involves the specific and dynamic processing of ATG8/LC3 by cysteine protease ATG4. However, to date, the mechanism whereby ATG4 is recruited to the membranes, the interaction of ATG4 and ATG8/LC3 on the membranes, and its role in the growth of phagophore are not completely understood. Here, we used fluorescence recovery after photobleaching to monitor the turnover of GFP-tagged ATG4B and LC3B in living animal cells. The data show that ATG4B localizes to early autophagic membranes in an LC3B-dependent manner. During autophagy, ATG4B and LC3B undergo rapid cytosol/isolation membrane exchange but not at the cytosol/completed autophagosome. In addition, ATG4B activity controls the efficiency of autophagosome formation by impacting the membrane binding/dissociation of LC3B. These data suggest that ATG4 and LC3 play interdependent roles in the formation of autophagosomes.
Keywords: ATG4; LC3; autophagosome biogenesis; autophagy; live-cell imaging; membrane binding kinetics.
© The Author(s) (2021). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, CEMCS, CAS.