Atmospheric CH4 is arguably the most interesting of the anthropogenically influenced, long-lived greenhouse gases. It has a diverse suite of sources, each presenting its own challenges in quantifying emissions, and while its main sink, atmospheric oxidation initiated by reaction with hydroxyl radical (OH), is well-known, determining the magnitude and trend in this and other smaller sinks remains challenging. Here, we provide an overview of the state of knowledge of the dynamic atmospheric CH4 budget of sources and sinks determined from measurements of CH4 and δ13CCH4 in air samples collected predominantly at background air sampling sites. While nearly four decades of direct measurements provide a strong foundation of understanding, large uncertainties in some aspects of the global CH4 budget still remain. More complete understanding of the global CH4 budget requires significantly more observations, not just of CH4 itself, but other parameters to better constrain key, but still uncertain, processes like wetlands and sinks. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Keywords: in situ observations; methane; time series.