Fundamentally different roles of neuronal TNF receptors in CNS pathology: TNFR1 and IKKβ promote microglial responses and tissue injury in demyelination while TNFR2 protects against excitotoxicity in mice

J Neuroinflammation. 2021 Sep 26;18(1):222. doi: 10.1186/s12974-021-02200-4.

Abstract

Background: During inflammatory demyelination, TNF receptor 1 (TNFR1) mediates detrimental proinflammatory effects of soluble TNF (solTNF), whereas TNFR2 mediates beneficial effects of transmembrane TNF (tmTNF) through oligodendroglia, microglia, and possibly other cell types. This model supports the use of selective inhibitors of solTNF/TNFR1 as anti-inflammatory drugs for central nervous system (CNS) diseases. A potential obstacle is the neuroprotective effect of solTNF pretreatment described in cultured neurons, but the relevance in vivo is unknown.

Methods: To address this question, we generated mice with neuron-specific depletion of TNFR1, TNFR2, or inhibitor of NF-κB kinase subunit β (IKKβ), a main downstream mediator of TNFR signaling, and applied experimental models of inflammatory demyelination and acute and preconditioning glutamate excitotoxicity. We also investigated the molecular and cellular requirements of solTNF neuroprotection by generating astrocyte-neuron co-cultures with different combinations of wild-type (WT) and TNF and TNFR knockout cells and measuring N-methyl-D-aspartate (NMDA) excitotoxicity in vitro.

Results: Neither neuronal TNFR1 nor TNFR2 protected mice during inflammatory demyelination. In fact, both neuronal TNFR1 and neuronal IKKβ promoted microglial responses and tissue injury, and TNFR1 was further required for oligodendrocyte loss and axonal damage in cuprizone-induced demyelination. In contrast, neuronal TNFR2 increased preconditioning protection in a kainic acid (KA) excitotoxicity model in mice and limited hippocampal neuron death. The protective effects of neuronal TNFR2 observed in vivo were further investigated in vitro. As previously described, pretreatment of astrocyte-neuron co-cultures with solTNF (and therefore TNFR1) protected them against NMDA excitotoxicity. However, protection was dependent on astrocyte, not neuronal TNFR1, on astrocyte tmTNF-neuronal TNFR2 interactions, and was reproduced by a TNFR2 agonist.

Conclusions: These results demonstrate that neuronal TNF receptors perform fundamentally different roles in CNS pathology in vivo, with neuronal TNFR1 and IKKβ promoting microglial inflammation and neurotoxicity in demyelination, and neuronal TNFR2 mediating neuroprotection in excitotoxicity. They also reveal that previously described neuroprotective effects of solTNF against glutamate excitotoxicity in vitro are indirect and mediated via astrocyte tmTNF-neuron TNFR2 interactions. These results consolidate the concept that selective inhibition of solTNF/TNFR1 with maintenance of TNFR2 function would have combined anti-inflammatory and neuroprotective properties required for safe treatment of CNS diseases.

Keywords: Autophagy; Glutamate excitotoxicity; Immunotherapy; Multiple sclerosis; NF-κB; Neurodegeneration; Neuroinflammation; Neuroprotection; Oligodendrocyte death; TNFR2 agonist.

MeSH terms

  • Animals
  • Demyelinating Diseases / metabolism
  • Demyelinating Diseases / pathology
  • Excitatory Amino Acid Agonists / toxicity
  • Female
  • I-kappa B Kinase / metabolism*
  • Kainic Acid / toxicity
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Microglia / metabolism*
  • Microglia / pathology
  • Neurons / metabolism*
  • Neurons / pathology
  • Neuroprotection / physiology
  • Receptors, Tumor Necrosis Factor, Type I / metabolism*
  • Receptors, Tumor Necrosis Factor, Type II / metabolism*
  • Seizures / chemically induced
  • Seizures / metabolism
  • Seizures / pathology

Substances

  • Excitatory Amino Acid Agonists
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • Tnfrsf1a protein, mouse
  • Tnfrsf1b protein, mouse
  • I-kappa B Kinase
  • Ikbkb protein, mouse
  • Kainic Acid