Tea trees have a high demand for nitrogen (N) fertilizer to improve the yield and quality of tea. In this research, transcriptome analysis revealed the effect of N starvation and resupply upon N uptake in tea plants. We identified 4098 differentially expressed genes (DEGs) that were significantly enriched in amino acid and N metabolism and were extensively mapped to the tea genome. The CsNRT gene family plays vital roles in the nitrogen uptake of tea plants. The full CDS sequences of CsNRT1.1, CsNRT1.2, CsNRT1.5, CsNRT1.7, CsNRT2.4, CsNRT2.5, CsNRT3.1 and CsNRT3.2 were cloned. One-year-old cutting seedlings of Zhongcha302 (ZC302) were selected for hydroponic culture and were used for gene expression analysis. The seedlings were resupplied with 0.2 and 2 mM N after N starvation. The results of the gene expression under different N treatments and in various tissues indicated that the expression of CsNRT2.4 was highly expressed in tea roots and was greatly induced by N. Overexpressed CsNRT2.4 in transgenic Arabidopsis thaliana increased the root lengths and fresh weights and improved the NO3- uptake rate in the Arabidopsis roots at a low NO3- level. Thus, we inferred that CsNRT2.4 was a key gene for N uptake in tea plant roots. This study provides new insights into the molecular mechanisms of tea plant responses to N resupply and reveals hub genes for improving nitrogen usage efficiency (NUE) in tea plants.
Keywords: CsNRTs; Gene functional analysis; Nitrogen; Tea plant; Transcriptome.
Copyright © 2021 Elsevier Masson SAS. All rights reserved.