The FcγRIII Engagement Augments PMA-Stimulated Neutrophil Extracellular Traps (NETs) Formation by Granulocytes Partially via Cross-Talk between Syk-ERK-NF-κB and PKC-ROS Signaling Pathways

Biomedicines. 2021 Sep 1;9(9):1127. doi: 10.3390/biomedicines9091127.

Abstract

Polymorphonuclear neutrophils (PMNs) are the most abundant white blood cell in the circulation capable of neutrophil extracellular traps (NETs) formation after stimulation. Both NADPH oxidase-dependent and -independent pathways are involved in NET formation. The IgG is the most abundant immunoglobulin in human serum. However, the impact of the circulating IgG on NET formation is totally unexplored. In this study, the all-trans retinoic acid (ATRA)-induced mature granulocytes (dHL-60) were pre-treated with monomeric human IgG, papain-digested Fab fragment, crystallizable IgG Fc portion, rituximab (a human IgG1), or IgG2. The NET formation of the dHL-60 in the presence/absence of phorbol 12-myristate 13-acetate (PMA) stimulation was then measured by the fluorescent area after SYTOX green nucleic acid stain. The intracellular reactive oxygen species (ROS) generation was measured by flow cytometry. Total and phosphorylated Syk, SHP-1, and ERK were detected by immunoblot. We found that human monomeric IgG and its subclasses IgG1 and IgG2 per se induced negligible NET formation of dHL-60, but the FcγRIII engagement by these IgG subclasses and Fc portion augment PMA-stimulated dHL-60 NET formation in a dose-dependent manner. Furthermore, we found that increased Syk and ERK phosphorylation, intracellular ROS generation, and pro-inflammatory cytokines, IL-8 and TNF-α, production could be induced after FcγRIII engagement. Blocking FcγRIII engagement by a specific antibody diminished the augmented NET formation. In conclusion, we discovered that cross-talk between FcγRIII engagement-induced Syk-ERK and PMA-induced PKC signaling pathways augment NET formation of dHL-60 via increased ROS generation and pro-inflammatory cytokines, IL-8 and TNF-α, production.

Keywords: FcγRIII engagement; IgG subclass; PAD4; Syk-ERK signaling pathway; differentiated HL-60 cells; neutrophil extracellular traps; polymorphonuclear neutrophil; reactive oxygen species.