Differential Regulation of Circulating Soluble Receptor for Advanced Glycation End Products (sRAGEs) and Its Ligands S100A8/A9 Four Weeks Post an Exercise Intervention in a Cohort of Young Army Recruits

Biomolecules. 2021 Sep 13;11(9):1354. doi: 10.3390/biom11091354.

Abstract

Apart from its beneficial effects on cardiovascular risk factors, an anti-inflammatory effect of exercise is strongly implicated. Yet, data regarding the effect of an exercise intervention on healthy individuals are limited and contradictory. The present study aimed to investigate the effects of a physical activity intervention on the soluble form of the receptor for advanced glycation end products (sRAGEs) and its ligands S100A8/A9. A total of 332 young army recruits volunteered and 169 completed the study. The participants underwent the standard basic training of Greek army recruits. IL-6, IL-1β, S100A8/A9, and sRAGEs were measured at the beginning and at the end of the training period. Primary rodent adult aortic smooth muscle cells (ASMCs) were analyzed for responsiveness to direct stimulation with S100A8/A9 alone or in combination with sRAGEs. At the end of the training period, we observed a statistically significant reduction in S100A8/A9 (630.98 vs. 472.12 ng/mL, p = 0.001), IL-1β (9.39 [3.8, 44.14] vs. 5.03 [2.44, 27.3] vs. pg/mL, p = 0.001), and sRAGEs (398.38 vs. 220.1 pg/mL, p = 0.001). IL-6 values did not change significantly after exercise. S100A8/A9 reduction was positively correlated with body weight (r = 0.236 [0.095, 0.370], p = 0.002) and BMI (r = 0.221 [0.092, 0.346], p = 0.004). Direct stimulation of ASMCs with S100A8/A9 increased the expression of IL-6, IL-1β, and TNF-α and, in the presence of sRAGEs, demonstrated a dose-dependent inhibition. A 4-week military training resulted in significant reduction in the pro-inflammatory cytokines IL-1β and S100A8/A9 complex. The observed reduction in sRAGEs may possibly reflect diminished RAGE axis activation. Altogether, our findings support the anti-inflammatory properties of physical activity.

Keywords: IL-6; S100A8/A9; exercise; inflammation; physical activity; sRAGEs.

Publication types

  • Clinical Trial

MeSH terms

  • Animals
  • Calgranulin A / blood*
  • Calgranulin B / blood*
  • Exercise / physiology*
  • Humans
  • Ligands
  • Male
  • Military Personnel*
  • Rats
  • Rats, Sprague-Dawley
  • Receptor for Advanced Glycation End Products / blood*
  • Solubility
  • Young Adult

Substances

  • Calgranulin A
  • Calgranulin B
  • Ligands
  • Receptor for Advanced Glycation End Products