Titanium and its alloys have been widely used as bone implants, but for reduced treatment span, improvements are urgently needed to achieve faster and better osteointegration. In this study, we found that miR-132-3p inhibited bone-marrow-derived stem cell (BMSC) osteogenic differentiation via targeting BMP2, and that inhibiting miR-132-3p could significantly improve the osteogenic capability of BMSCs. Moreover, we fabricated a biocompatible selenomethionine (SEMET)-modified polyethylene glycol (PEG)/polyethylenimine (PEI) nanoparticle (SeNP) cross-linked with 0.2% gelatin solutions and delivered miR-132-3p inhibitor to biofunctionalize alkali heat-treated titanium implants, resulting in the development of a novel coating for reverse transfection. The biological performances of PEG/PEI/miR-132-3p inhibitor and SeNP/miR-132-3p inhibitor-biofunctionalized titanium were compared. The biological effects, including cell viability, cytotoxicity, adhesion, cellular uptake, and osteogenic capacity of SeNP/miR-132-3p inhibitor-biofunctionalized titanium implants, were then assessed. Results showed that SeNPs presented appropriate morphology, diameter, and positive zeta potential for efficient gene delivery. The transfection efficiency of the SeNP/miR-132-3p inhibitor was comparable to that of the PEG/PEI/miR-132-3p inhibitor, but the former induced less reactive oxygen species (ROS) production and lower apoptosis rates. Confocal laser scanning microscopy (CLSM) demonstrated that SeNP/miR-132-3p inhibitor nanoparticles released from the titanium surfaces and were taken up by adherent BMSCs. In addition, the release profile showed that transfection could obtain a long-lasting silencing effect for more than 2 weeks. The cell viability, cytotoxicity, and cell spreading of SeNP/miRNA-132-3p inhibitor-biofunctionalized titanium were comparable with those of untreated titanium and the SeNP/miRNA-132-3p inhibitor negative control (NC)-biofunctionalized titanium but resulted in higher ALP activity and osteogenic gene expression levels. In vivo animal studies further certified that SeNP/miRNA-132-3p inhibitor nanoparticles from titanium surfaces promoted osteointegration, which was revealed by microcomputed tomography (micro-CT) and histological observations. Taken together, these findings suggested that selenomethionine-modified PEI-based nanoparticles could achieve better biocompatibility. Moreover, titanium implants biofunctionalized by SeNP/miRNA-132-3p inhibitor nanoparticles might have significant clinical potential for more effective osteointegration.
Keywords: miR-132-3p; osteointegration; polyethylenimine; selenomethionine; titanium implant.