The present study aimed to compare the differences between the humanized CD19 chimeric antigen receptor (CAR)-T cell therapy and the murine CD19 CAR-T therapy in recurrent B-acute lymphoblastic leukemia (B-ALL). A 62-year-old male patient who had B-ALL (BCR/ABL+) for 4 years was diagnosed with relapsed central nervous system leukemia (CNSL). After several courses of high dose methotrexate combined with intrathecal chemotherapy, the patient received murine CD19 CAR-T therapy and achieved complete response (CR). The patient was diagnosed with relapsed CNSL again 15 months after his murine CD19 CAR-T therapy, and was therefore enrolled in the humanized CD19 CAR-T therapy. Subsequently, the present study aimed to compare murine and humanized CD19 CAR-T cells against Nalm-6 cells in vitro and in mice. The patient initially achieved CR from his murine CD19 CAR-T therapy with Grade 1 cytokine-release syndrome (CRS) and Grade 1 CAR-T cell-related encephalopathy syndrome (CRES). The patient then achieved CR again from his humanized CD19 CAR-T therapy with Grade 1 CRS and Grade 2 CRES. Peak levels of CD19 CAR-T cells were higher in humanized CD19 CAR-T therapy than those in murine CD19 CAR-T therapy 7 days after infusion in the peripheral blood, in bone marrow and in cerebrospinal fluid (CSF). The cytokine levels were higher in humanized CD19 CAR-T therapy than those in murine CD19 CAR-T therapy in the peripheral blood and in CSF. The cytotoxicity to Nalm-6 cells was higher in humanized CD19 CAR-T cells than that in murine CD19 CAR-T cells in vitro. In Nalm-6 BALB/c mice, the median survival time of mice in the murine CD19 CAR-T group was 35 days, while it was 43 days in the humanized CD19 CAR-T group. In conclusion, humanized CD19 CAR-T cell therapy had a better curative effect than that of murine CD19 CAR-T therapy, and may be used as a salvage treatment for recurrent B-ALL after treatment with murine CD19 CAR-T therapy.
Keywords: central nervous system leukemia; chimeric antigen receptor-T cells; cytokine release syndrome; humanized; murine.
Copyright: © Li et al.