A fundamental understanding of materials' structural dynamics, with fine spatial and temporal control, underpins future developments in electronic and quantum materials. Here, we introduce an optical transient grating pump and focused X-ray diffraction probe technique (TGXD) to examine the structural evolution of materials excited by modulated light with a precisely controlled spatial profile. This method adds spatial resolution and direct structural sensitivity to the established utility of a sinusoidal transient-grating excitation. We demonstrate TGXD using two thin-film samples: epitaxial BiFeO3, which exhibits a photoinduced strain (structural grating) with an amplitude proportional to the optical fluence, and FeRh, which undergoes a magnetostructural phase transformation. In BiFeO3, structural relaxation is location independent, and the strain persists on the order of microseconds, consistent with the optical excitation of long-lived charge carriers. The strain profile of the structural grating in FeRh, in comparison, deviates from the sinusoidal excitation and exhibits both higher-order spatial frequencies and a location-dependent relaxation. The focused X-ray probe provides spatial resolution within the engineered optical excitation profile, resolving the spatiotemporal flow of heat through FeRh locally heated above the phase transition temperature. TGXD successfully characterizes mesoscopic energy transport in functional materials without relying on a specific transport model.
© 2021. The Author(s).