Age-related cardiovascular disease is the leading cause of death in elderly populations. Coxibs, including celecoxib, valdecoxib, etoricoxib, parecoxib, lumiracoxib, and rofecoxib, are selective cyclooxygenase-2 (COX-2) inhibitors used to treat osteoarthritis and rheumatoid arthritis. However, many coxibs have been discontinued due to adverse cardiovascular events. COX-2 contains cyclooxygenase (COX) and peroxidase (POX) sites. COX-2 inhibitors block COX activity without affecting POX activity. Recently, quercetin-like flavonoid compounds with OH groups in their B-rings have been found to serve as activators of COX-2 by binding the POX site. Galangin-like flavonol compounds serve as inhibitors of COX-2. Interestingly, nabumetone, flurbiprofen axetil, piketoprofen-amide, and nepafenac are ester prodrugs that inhibit COX-2. The combination of galangin-like flavonol compounds with these prodrug metabolites may lead to the development of novel COX-2 inhibitors. This review focuses on the most compelling evidence regarding the role and mechanism of COX-2 in cardiovascular diseases and demonstrates that quercetin-like compounds exert potential cardioprotective effects by serving as cofactors of COX-2.
Keywords: COX-2; Cardiovascular; Coxibs; Galangin; Quercetin.
© 2021. The Author(s).