This article details ways that machine learning and artificial intelligence technologies are being integrated in modern hearing aids to improve speech understanding in background noise and provide a gateway to overall health and wellness. Discussion focuses on how Starkey incorporates automatic and user-driven optimization of speech intelligibility with onboard hearing aid signal processing and machine learning algorithms, smartphone-based deep neural network processing, and wireless hearing aid accessories. The article will conclude with a review of health and wellness tracking capabilities that are enabled by embedded sensors and artificial intelligence.
Keywords: artificial intelligence; background noise; deep neural networks; embedded sensors; fall detection; hearing aid; machine learning; speech intelligibility.
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. ( https://creativecommons.org/licenses/by-nc-nd/4.0/ ).