Sequen-C: A Multilevel Overview of Temporal Event Sequences

IEEE Trans Vis Comput Graph. 2022 Jan;28(1):901-911. doi: 10.1109/TVCG.2021.3114868. Epub 2021 Dec 24.

Abstract

Building a visual overview of temporal event sequences with an optimal level-of-detail (i.e. simplified but informative) is an ongoing challenge - expecting the user to zoom into every important aspect of the overview can lead to missing insights. We propose a technique to build a multilevel overview of event sequences, whose granularity can be transformed across sequence clusters (vertical level-of-detail) or longitudinally (horizontal level-of-detail), using hierarchical aggregation and a novel cluster data representation Align-Score-Simplify. By default, the overview shows an optimal number of sequence clusters obtained through the average silhouette width metric - then users are able to explore alternative optimal sequence clusterings. The vertical level-of-detail of the overview changes along with the number of clusters, whilst the horizontal level-of-detail refers to the level of summarization applied to each cluster representation. The proposed technique has been implemented into a visualization system called Sequence Cluster Explorer (Sequen-C) that allows multilevel and detail-on-demand exploration through three coordinated views, and the inspection of data attributes at cluster, unique sequence, and individual sequence level. We present two case studies using real-world datasets in the healthcare domain: CUREd and MIMIC-III; which demonstrate how the technique can aid users to obtain a summary of common and deviating pathways, and explore data attributes for selected patterns.