Compression of 42 fs, 0.29 mJ pulses from a Ti:Sapphire amplifier down to 8 fs (approximately 3 optical cycles) is demonstrated by means of spectral broadening in a compact multi-pass cell filled with argon. The efficiency of the nonlinear pulse compression is limited to 45 % mostly by losses in the mirrors of the cell. The experimental results are supported by 3-dimensional numerical simulations of the nonlinear pulse propagation in the cell that allow us to study spatio-spectral properties of the pulses after spectral broadening.