Background: The prediction of in-hospital mortality for ICU patients with COVID-19 is fundamental to treatment and resource allocation. The main purpose was to develop an easily implemented score for such prediction.
Methods: This was an observational, multicenter, development, and validation study on a national critical care dataset of COVID-19 patients. A systematic literature review was performed to determine variables possibly important for COVID-19 mortality prediction. Using a logistic multivariable model with a LASSO penalty, we developed the Rapid Evaluation of Coronavirus Illness Severity (RECOILS) score and compared its performance against published scores.
Results: Our development (validation) cohort consisted of 1480 (937) adult patients from 14 (11) Dutch ICUs admitted between March 2020 and April 2021. Median age was 65 (65) years, 31% (26%) died in hospital, 74% (72%) were males, average length of ICU stay was 7.83 (10.25) days and average length of hospital stay was 15.90 (19.92) days. Age, platelets, PaO2/FiO2 ratio, pH, blood urea nitrogen, temperature, PaCO2, Glasgow Coma Scale (GCS) score measured within +/-24 h of ICU admission were used to develop the score. The AUROC of RECOILS score was 0.75 (CI 0.71-0.78) which was higher than that of any previously reported predictive scores (0.68 [CI 0.64-0.71], 0.61 [CI 0.58-0.66], 0.67 [CI 0.63-0.70], 0.70 [CI 0.67-0.74] for ISARIC 4C Mortality Score, SOFA, SAPS-III, and age, respectively).
Conclusions: Using a large dataset from multiple Dutch ICUs, we developed a predictive score for mortality of COVID-19 patients admitted to ICU, which outperformed other predictive scores reported so far.
Keywords: COVID-19; corona virus; intensive care; mechanical ventilation; respiratory failure.
© 2021 The Authors. Acta Anaesthesiologica Scandinavica published by John Wiley & Sons Ltd on behalf of Acta Anaesthesiologica Scandinavica Foundation.