Objective: By interfering with multiple cytokines, human Janus kinase inhibitors (JAKis) are of growing importance in the treatment of malignant and inflammatory conditions. Although tofacitinib has demonstrated efficacy as the first-in-class JAKi in ulcerative colitis many aspects concerning its mode of action and pharmacokinetics remain unresolved.
Design: We studied tofacitinib's impact on various primary human innate and adaptive immune cells. In-depth in vivo studies were performed in dextran sodium sulfate-induced colitis in mice. Immune populations were characterized by flow cytometry and critical transcription factors and effector cytokines were analyzed. Pharmacokinetics of tofacitinib was studied by liquid chromatography-tandem mass spectrometry.
Results: Tofacitinib inhibited proliferation in CD4+ and CD8+ T cells along with Th1 and Th17 differentiation, while Th2 and regulatory T cell lineages were largely unaffected. Monocytes and macrophages were directed toward an anti-inflammatory phenotype and cytokine production was suppressed in intestinal epithelial cells. These findings were largely reproducible in murine cells of the inflamed mucosa in dextran sulfate sodium colitis. Short-term treatment with tofacitinib had little impact on the mouse microbiota. Strikingly, the degree of inflammation and circulating tofacitinib levels showed a strong positive correlation. Finally, we identified inflammation-induced equilibrative nucleoside transporters as regulators of tofacitinib uptake into leukocytes.
Conclusions: We provide a detailed analysis of the cell-specific immune-suppressive effects of the JAKis tofacitinib on innate and adaptive immunity and reveal that intestinal inflammation critically impacts tofacitinib's pharmacokinetics in mice. Furthermore, we describe an unappreciated mechanism-namely induction of equilibrative nucleoside transporters-enhancing baseline cellular uptake that can be inhibited pharmaceutically.
Keywords: JAK inhibitor; inflammatory bowel disease; mucosal inflammation; pharmacokinetics; tofacitinib.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.