Effects of Sex and Age on Quadriceps and Hamstring Strength and Flexibility in High School Basketball Athletes

Int J Sports Phys Ther. 2021 Oct 1;16(5):1302-1312. doi: 10.26603/001c.27986. eCollection 2021.

Abstract

Background: Eccentric hamstring strength and hamstring/quadriceps strength ratios have been identified as modifiable risk factors of hamstring strains. Additionally, those strength and flexibility characteristics are commonly used as clinical tests to monitor progress of athletes with acute or chronic hamstring strains. Although hamstring strains are common among basketball athletes, normative values of knee strength and flexibility characteristics are scarce. Normative values for these athletes would be important in prevention and management of hamstring strains.

Purpose: To establish quadriceps and hamstring isokinetic strength and flexibility values among high school basketball athletes and examine the effects of sex and age.

Study design: Cross-sectional research.

Methods: Isokinetic knee muscular strength (concentric quadriceps [QuadC], concentric hamstring [HamC], eccentric hamstring [HamE], and strength ratios ([HamC/QuadC and HamE/Quad]), flexibility of hip flexors and quadriceps during a Modified Thomas test, and flexibility of hip extensors and hamstring during passive straight leg raise (SLR) and passive knee extension (PKE) tests were measured. Effects of sex and age were analyzed using t-tests and analysis of variance, respectively with Bonferroni corrected post hoc tests (p≤0.01).

Results: A total of 172 high school basketball athletes (64 males/108 females; mean age (range): 15.7 (14-18) years old) participated in the study. Male athletes were significantly stronger than female athletes (QuadC: p<0.001; HamC: p<0.001) while no differences were observed in strength ratio (HamC/QuadC: p=0.759-0.816; HamE/QuadC: p=0.022-0.061). Among male athletes, a significant effect of age on quadriceps and hamstring strength was observed: older male athletes were stronger than younger male athletes. Contrarily, there were no effects of age on strength among female athletes. There were significant sex differences in quadriceps flexibility, SLR, and PKE (female athletes were more flexible; p=0.001-0.005) while no sex differences were found in hip flexor flexibility (p=0.105-0.164). There were no effects of age for any flexibility variables within male and female athletes (p=0.151-0.984).

Conclusion: The current results provide normative values for hamstring strength and flexibility in high school basketball athletes. These normative values may further assist sports medicine specialists to develop screening tests, interventions, and return-to-sport criteria in this population.

Level of evidence: 3B.

Keywords: age; hamstring; high school basketball athletes; risk factors; sex.