Magnetic resonance fingerprinting (MRF) is an emerging imaging technique for rapid and simultaneous quantification of multiple tissue properties. The technique has been developed for quantitative imaging of different organs. The obtained quantitative measures have the potential to improve multiple steps of a typical radiotherapy workflow and potentially further improve integration of magnetic resonance imaging guided clinical decision making. In this review paper, we first provide a technical overview of the MRF method from data acquisition to postprocessing, along with recent development in advanced reconstruction methods. We further discuss critical aspects that could influence its usage in radiation therapy, such as accuracy and precision, repeatability and reproducibility, geometric distortion, and motion robustness. Finally, future directions for MRF application in radiation therapy are discussed.
Keywords: MR-Linac; T1 relaxation time; T2 relaxation time; pattern matching; quantitative MRI; radiation therapy.
© 2021 American Association of Physicists in Medicine.