First principles study on modulating electronic and optical properties with h-BN intercalation in AlN/MoS2heterostructure

Nanotechnology. 2021 Oct 29;33(3). doi: 10.1088/1361-6528/ac2f27.

Abstract

The van der Waals (vdW) heterostructures formed by stacking layered two-dimensional materials can improve the performance of materials and provide more applications. In our paper, six configurations of AlN/MoS2vdW heterostructures were constructed, the most stable structure was obtained by calculating the binding energy. On this basis, the effect of external vertical strain on AlN/MoS2heterostructure was analyzed, the calculated results show that the optimal interlayer distance was 3.593 Å and the band structure was modulated. Then the h-BN intercalation was inserted into the AlN/MoS2heterostructure, by fixing the distance between h-BN and AlN or MoS2, two kinds of models were obtained. Furthermore, the electronic properties of AlN/MoS2heterostructure can be regulated by adding h-BN intercalation layer and adjusting its position. Finally, the optical properties show that the absorption coefficient of AlN/MoS2heterostructure exhibits enhancement characteristic compared with that of the individual monolayers. Meantime, compared with AlN/MoS2, the AlN/h-BN/MoS2shows a redshift effect and the light absorption peak intensity increased, which indicated that h-BN intercalation layer can be used to regulate the electronic and optical properties of AlN/MoS2heterostructure.

Keywords: AlN/MoS2; external strain; first-principles; h-BN intercalation; van der Waals heterostructure.