Micropipes in SiC Single Crystal Observed by Molten KOH Etching

Materials (Basel). 2021 Oct 8;14(19):5890. doi: 10.3390/ma14195890.

Abstract

Micropipe, a "killer" defect in SiC crystals, severely hampers the outstanding performance of SiC-based devices. In this paper, the etching behavior of micropipes in 4H-SiC and 6H-SiC wafers was studied using the molten KOH etching method. The spectra of 4H-SiC and 6H-SiC crystals containing micropipes were examined using Raman scattering. A new Raman peak accompanying micropipes located near -784 cm-1 was observed, which may have been induced by polymorphic transformation during the etching process in the area of micropipe etch pits. This feature may provide a new way to distinguish micropipes from other defects. In addition, the preferable etching conditions for distinguishing micropipes from threading screw dislocations (TSDs) was determined using laser confocal microscopy, scanning electron microscopy (SEM) and optical microscopy. Meanwhile, the micropipe etching pits were classified into two types based on their morphology and formation mechanism.

Keywords: KOH etching; Raman; SiC; classification of etch pits; micropipes.