Rationale and objectives: To investigate the feasibility and value of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) and texture parameters of primary lesions and lymph nodes for predicting pelvic lymph node metastasis in patients with cervical cancer.
Materials and methods: A total of 143 patients with cervical cancer confirmed by surgical pathology were analyzed retrospectively and 125 patients were enrolled in primary lesions study, 83 patients and 134 lymph nodes were enrolled in lymph nodes study. Patients and lymph nodes were randomly divided into training group and test group at a ratio of 2: 1. The IVIM-DWI parameters and 3D texture features of primary lesions and lymph nodes of all patients were measured. The least absolute shrinkage and selection operator algorithm, spearman's correlation analysis, independent two-sample t-test and Mann-Whitney U-test were used to select texture parameters. Multivariate Logistic regression analysis and receiver operating characteristic curves were used to model and evaluate diagnostic performances.
Results: In primary lesions study, model 1 was constructed by combining f value, original_shape_Sphericity and original_firstorder_Mean of primary lesions. In lymph nodes study, model 2 was constructed by combining short diameter, circular enhancement and rough margin of lymph nodes. Model 3 was constructed by combining ADC, f value and original_glszm_Small Area Emphasis of lymph nodes. The areas under curve of model 1, 2 and 3 in training group and test group were 0.882, 0.798, 0.907 and 0.862, 0.771, 0.937 respectively.
Conclusion: Models based on IVIM-DWI and texture parameters of primary lesions and lymph nodes both performed well in diagnosing pelvic lymph node metastasis of cervical cancer and were superior to morphological features of lymph nodes. Especially, parameters of lymph nodes showed higher diagnostic efficiency and clinical significance.
Keywords: Cervical cancer; Intravoxel incoherent motion diffusion weighted imaging; Pelvic lymph node metastasis; Texture analysis.
Copyright © 2021 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.