Butenyl-spinosyn is a highly effective and broad-spectrum biopesticide produced by Saccharopolyspora pogona. However, the yield of this compound is difficult to increase because the regulatory mechanism of secondary metabolism is still unknown. Here, the transcriptional regulator Sp13016 was discovered to be highly associated with butenyl-spinosyn synthesis and bacterial growth. Overexpression of sp13016 improved butenyl-spinosyn production to a level that was 2.84-fold that of the original strain, while deletion of sp13016 resulted in a significant decrease in yield and growth inhibition. Comparative proteomics revealed that these phenotypic changes were attributed to the influence of Sp13016 on the central carbon metabolism pathway to regulate the supply of precursors. Our research helps to reveal the regulatory mechanism of butenyl-spinosyn biosynthesis and provides a reference for increasing the yield of natural products of Actinomycetes.
Keywords: Saccharopolyspora pogona; butenyl-spinosyn; comparative proteomics; natural products; regulation mechanism.