Ponatinib is a tyrosine kinase inhibitor (TKI) directed against BCR-ABL1 which is successfully used in patients with BCR-ABL1 T315I+ chronic myeloid leukemia (CML). However, BCR-ABL1 compound mutations may develop during therapy in these patients and may lead to drug resistance. Asciminib is a novel drug capable of targeting most BCR-ABL1 mutant-forms, including BCR-ABL1T315I, but remains ineffective against most BCR-ABL1T315I+ compound mutation-bearing sub-clones. We demonstrate that asciminib synergizes with ponatinib in inducing growth-arrest and apoptosis in patient-derived CML cell lines and murine Ba/F3 cells harboring BCR-ABL1 T315I or T315I-including compound mutations. Asciminib and ponatinib also produced cooperative effects on CRKL phosphorylation in BCR-ABL1-transformed cells. The growth-inhibitory effects of the drug combination 'asciminib+ponatinib' was further enhanced by hydroxyurea (HU), a drug which has lately been described to suppresses the proliferation of BCR-ABL1 T315I+ CML cells. Cooperative drug effects were also observed in patient-derived CML cells. Most importantly, we were able to show that the combinations 'asciminib+ponatinib' and 'asciminib+ponatinib+HU' produce synergistic apoptosis-inducing effects in CD34+/CD38- CML stem cells obtained from patients with chronic phase CML or BCR-ABL1 T315I+ CML blast phase. Together, asciminib, ponatinib and HU synergize in producing anti-leukemic effects in multi-resistant CML cells, including cells harboring T315I+ BCR-ABL1 compound mutations and CML stem cells. The clinical efficacy of this TKI combination needs to be evaluated within the frame of upcoming clinical trials.
Keywords: BCR-ABL1 compound mutations; BCR-ABL1T315I; CML; asciminib; drug combinations; hydroxyurea; leukemic stem cells; ponatinib.
AJCR Copyright © 2021.