This study was conducted to investigate the effects of combined supplementation of sodium humate (HNa) and glutamine (Gln) on growth performance, diarrhea incidence, serum parameters, intestinal microbiome, and metabolites of weaned calves. In Exp. 1, 40 calves were randomly assigned to four treatments: 1) NC (negative control, basal diet), 2) 1% H+1% G (basal diet extra orally gavaged with 1 g of HNa and 1 g of Gln daily), 3) 3% H+1% G (basal diet extra orally gavaged with 3 g of HNa and 1 g of Gln daily), and 4) 5% H+1% G (basal diet extra orally gavaged with 5 g of HNa and 1 g of Gln daily). The HNa and Gln were together mixed with 100 mL of milk replacer (51 to 58 d of age) or water (59 to 72 d of age) and orally administrated to each calf from a bottle before morning feeding. In a 21-d trial, calves on the 5% HNa+1% Gln group had higher (P < 0.05) average daily gain (ADG) and lower (P < 0.05) diarrhea incidence than those in the control group. In Exp. 2, 20 calves were randomly assigned to two treatments fed with a basal diet and a basal diet supplemented with 100 mL of 5% HNa+1% Gln. In a 21-d trial, calves supplemented with HNa and Gln had higher (P < 0.05) ADG, IgG concentration and glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) activities in the serum, but lower (P < 0.05) diarrhea incidence, as well as serum diamine oxidase (DAO), D-isomer of lactic acid (D-lac), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) concentrations compared with control group. Results of intestinal microbiota indicated that supplementation with HNa and Gln significantly increased (P < 0.05) the abundance of intestinal beneficial microbiota. Moreover, supplementation with HNa and Gln altered 18 metabolites and enriched 6 Kyoto Encyclopedia of Genes and Genomes pathways in weaned calves. In conclusion, combined supplementation with HNa and Gln could decrease diarrhea incidence of weaned calves via altering intestinal microbial ecology and metabolism profile.
Keywords: dairy calf; diarrhea incidence; glutamine; intestinal microbiota; metabolomics; sodium humate.
© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: [email protected].