In this work, the effect of molecular cosolvents tetraethylene glycol dimethyl ether (TEGDME) on the structure and versatile nature of mixtures of these compounds with imidazolium-based ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) is analyzed and discussed at a molecular level by means of all-atom molecular dynamics (MD) simulations. In the whole concentration range of the binary mixtures, the structures and properties evolution was studied by means of systematic molecular dynamics simulations of the fraction of hydrogen bonds, the radial and spatial distribution functions for the various molecular ions and molecular species in the system, together with the snapshots visualization of equilibrated simulation boxes with a color-coding scheme and the rotational dynamics of coumarin 153 (C153) in the binary mixtures. The goal of the work is to provide a molecular-level understanding of significant improvement of ionic conductivity and self-diffusion with the presence of TEGDME as a cosolvent, which causes an enhancement to the ion translational motion and fluidity in the [bmim][PF6] ionic liquids (ILs). Under a mixture concentration change, the microstructure changes of [bmim][PF6] with the TEGDME molar fraction (XTEG) above 0.50 show a slight difference from that of neat [bmim][PF6] IL and concentrated [bmim][PF6]/TEGDME mixture in terms of the radial and spatial distribution functions. The relative diffusivities of solvent molecules to cations as a function of concentration were found to depend on the solvent but not on the anion. A TEGDME increase is found to be advantageous to the dissipation of the polar regions as well as the nonpolar regions in the [bmim][PF6] ionic liquids. These conclusions are consistent with the experimental results, which verified that the unique, complex, and versatile nature of [bmim][PF6]/TEGDME mixture can be correctly modeled and discussed at a molecular level using MD simulation data.
Keywords: dynamical and transport properties; hybrid binary mixtures; ionic liquids; molecular dynamics (MD) simulations; thermophysical properties.