New approach in SARS-CoV-2 surveillance using biosensor technology: a review

Environ Sci Pollut Res Int. 2022 Jan;29(2):1677-1695. doi: 10.1007/s11356-021-17096-z. Epub 2021 Oct 23.

Abstract

Biosensors are analytical tools that transform the bio-signal into an observable response. Biosensors are effective for early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection because they target viral antigens to assess clinical development and provide information on the severity and critical trends of infection. The biosensors are capable of being on-site, fast, and extremely sensitive to the target viral antigen, opening the door for early detection of SARS-CoV-2. They can screen individuals in hospitals, airports, and other crowded locations. Microfluidics and nanotechnology are promising cornerstones for the development of biosensor-based techniques. Recently, due to high selectivity, simplicity, low cost, and reliability, the production of biosensor instruments have attracted considerable interest. This review article precisely provides the extensive scientific advancement and intensive look of basic principles and implementation of biosensors in SARS-CoV-2 surveillance, especially for human health. In this review, the importance of biosensors including Optical, Electrochemical, Piezoelectric, Microfluidic, Paper-based biosensors, Immunosensors, and Nano-Biosensors in the detection of SARS-CoV-2 has been underscored. Smartphone biosensors and calorimetric strips that target antibodies or antigens should be developed immediately to combat the rapidly spreading SARS-CoV-2. Wearable biosensors can constantly monitor patients, which is a highly desired feature of biosensors. Finally, we summarized the literature, outlined new approaches and future directions in diagnosing SARS-CoV-2 by biosensor-based techniques.

Keywords: Biosensors; Detection; Epidemiology; Microfluidic; SARS-CoV-2; Techniques.

Publication types

  • Review

MeSH terms

  • Biosensing Techniques*
  • COVID-19* / diagnosis
  • Humans
  • Immunoassay
  • Reproducibility of Results
  • SARS-CoV-2