Background: Campanula glomerata L. (Campanulaceae) is a self-incompatible, insect-pollinated herb occurring in calcareous grasslands, and is declining and (critically) endangered in many parts of its European distribution range. It often exists as small and isolated populations. A recovery plan of C. glomerata has been implemented in southern Belgium, involving plant translocations.
Methods and results: We developed microsatellite markers using an enriched genomic library and characterized 16 loci in 111 individuals from eight populations. These 16 loci were highly polymorphic, with 11 to 31 alleles per locus for a total of 329 alleles, and expected heterozygosity (He) ranging from 0.470 to 0.938.
Conclusions: These highly polymorphic loci constitute a promising tool for detailed genetic analyses: assigning individuals to distinct multilocus genotypes will allow quantifying pollen dispersal, clonal propagation and sexual recruitment and identifying admixed seed progeny and their pollen donors. Evaluating the genetic status of existing populations and a genetic monitoring of the translocated populations will contribute to optimize success in restoring viable and evolutionary resilient populations.
Keywords: Campanula glomerata L.; Endangered species; Genetic restoration; Plant translocations.
© 2021. The Author(s), under exclusive licence to Springer Nature B.V.