Identification of Diagnostic Signatures and Immune Cell Infiltration Characteristics in Rheumatoid Arthritis by Integrating Bioinformatic Analysis and Machine-Learning Strategies

Front Immunol. 2021 Oct 6:12:724934. doi: 10.3389/fimmu.2021.724934. eCollection 2021.

Abstract

Background: Rheumatoid arthritis (RA) refers to an autoimmune rheumatic disease that imposes a huge burden on patients and society. Early RA diagnosis is critical to preventing disease progression and selecting optimal therapeutic strategies more effectively. In the present study, the aim was at examining RA's diagnostic signatures and the effect of immune cell infiltration in this pathology.

Methods: Gene Expression Omnibus (GEO) database provided three datasets of gene expressions. Firstly, this study adopted R software for identifying differentially expressed genes (DEGs) and conducting functional correlation analyses. Subsequently, we integrated bioinformatic analysis and machine-learning strategies for screening and determining RA's diagnostic signatures and further verify by qRT-PCR. The diagnostic values were assessed through receiver operating characteristic (ROC) curves. Moreover, this study employed cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) website for assessing the inflammatory state of RA, and an investigation was conducted on the relationship of diagnostic signatures and infiltrating immune cells.

Results: On the whole, 54 robust DEGs received the recognition. Lymphocyte-specific protein 1 (LSP1), Granulysin (GNLY), and Mesenchymal homobox 2 (MEOX2) (AUC = 0.955) were regarded as RA's diagnostic markers and showed their statistically significant difference by qRT-PCR. As indicated from the immune cell infiltration analysis, resting NK cells, neutrophils, activated NK cells, T cells CD8, memory B cells, and M0 macrophages may be involved in the development of RA. Additionally, all diagnostic signatures might be different degrees of correlation with immune cells.

Conclusions: In conclusion, LSP1, GNLY, and MEOX2 are likely to be available in terms of diagnosing and treating RA, and the infiltration of immune cells mentioned above may critically impact RA development and occurrence.

Keywords: bioinformatic analysis; diagnostic marker; immune cells; machine-learning strategies; rheumatoid arthritis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antigens, Differentiation, T-Lymphocyte / genetics
  • Arthritis, Rheumatoid / diagnosis*
  • Arthritis, Rheumatoid / genetics*
  • Arthritis, Rheumatoid / immunology*
  • Biomarkers
  • Computational Biology
  • Databases, Genetic*
  • Female
  • Gene Expression Regulation
  • Homeodomain Proteins / genetics
  • Humans
  • Leukocytes / immunology
  • Machine Learning
  • Macrophages / immunology
  • Male
  • Mast Cells / immunology
  • Microfilament Proteins / genetics
  • Synovial Membrane / immunology

Substances

  • Antigens, Differentiation, T-Lymphocyte
  • Biomarkers
  • GNLY protein, human
  • Homeodomain Proteins
  • LSP1 protein, human
  • MEOX2 protein, human
  • Microfilament Proteins