Oceans are major sinks for anthropogenic pollutants, including per- and polyfluoroalkyl substances (PFAS). Although PFAS have been detected in surface waters globally, this is the first report of PFAS in a deep (170-400 m) demersal species in the Gulf of Mexico (GoM). Golden Tilefish (Lopholatilus chamaeleonticeps) plasma extracts (n = 185) were investigated for the presence of PFAS using ultra-high performance liquid chromatography-tandem mass spectrometry. A subset of liver tissues (n = 51) were also analyzed for microscopic hepatic changes (MHCs). Overall, nine of the 110 PFAS targeted were detected in Tilefish plasma at relatively high frequencies. Plasma concentrations of total PFAS (Σ9PFAS) ranged from below the detection limit to 27.9 ng g-1 w.w. Significant regional differences were observed with the highest concentrations of PFAS detected in the north central region of the GoM, where substantial industrialization and discharges from the Mississippi River occur. Compared to most wildlife and matrices analyzed globally, the PFAS profiles in Tilefish were unique as they are dominated by PFUnDA. Profile differences are hypothesized to be the result of Tilefish's distinctive lifestyle, habitat, diet, and partitioning characteristics of long-chain PFAS. Several MHCs were identified in this subset of Tilefish that could be detrimental to their health. Significant correlations between PFAS concentrations and biometric indices and MHCs were evident, however, additional research is needed to investigate the role PFAS and PFAS combined with chemical admixtures may play in inducing observed hepatic changes and other physiological effects in Tilefish. These findings give insight into the fate of PFAS at depth in aquatic ecosystems and are cause for concern regarding the health of other deep water benthic biota in GoM and other deepwater sinks for PFAS.
Keywords: Demersal; Fish; Long-chain PFCA; PFUndA; Per- and polyfluoroalkyl substances; Ultra-high-performance liquid chromatography – tandem mass spectrometry.
Copyright © 2021 Elsevier B.V. All rights reserved.