Background context: Although survival of patients with spinal metastases has improved over the last decades due to advances in multi-modal therapy, there are currently no reliable predictors of mortality. Body composition measurements obtained using computed tomography (CT) have been recently proposed as biomarkers for survival in patients with and without cancer. Patients with cancer routinely undergo CT for staging or surveillance of therapy. Body composition assessed using opportunistic CTs might be used to determine survival in patients with spinal metastases.
Purpose: The purpose of this study was to determine the value of body composition measures obtained on opportunistic abdomen CTs to predict 90-day and 1-year mortality in patients with spinal metastases undergoing surgery. We hypothesized that low muscle and abdominal fat mass were positive predictors of mortality.
Study design: Retrospective study at a single tertiary care center in the United States.
Patient sample: This retrospective study included 196 patients between 2001 and 2016 that were 18 years of age or older, underwent surgical treatment for spinal metastases, and had a preoperative CT of the abdomen within three months prior to surgery.
Outcome measures: Ninety-day and 1-year mortality by any cause.
Methods: Quantification of cross-sectional areas (CSA) and CT attenuation of abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and paraspinous and abdominal skeletal muscle were performed on CT images at the level of L4 using an in-house automated algorithm. Sarcopenia was determined by total muscle CSA (cm2) divided by height squared (m2) with cutoff values of <52.4 cm2/m2 for men and <38.5 cm2/m2 for women. Bivariate and multivariate Cox proportional-hazard analyses were used to determine the associations between body compositions and 90-day and 1-year mortality.
Results: The median age was 62 years (interquartile range=53-70). The mortality rate for 90-day was 24% and 1-year 54%. The presence of sarcopenia was associated with an increased 1-year mortality rate of 66% compared with a 1-year mortality rate of 41% in patients without sarcopenia (hazard ratio, 1.68; 95% confidence interval, 1.08-2.61; p=.02) after adjusting for various clinical factors including primary tumor type, ECOG performance status, additional metastases, neurology status, and systemic therapy. Additional analysis showed an association between sarcopenia and increased 1-year mortality when controlling for the prognostic modified Bauer score (HR, 1.58; 95%CI, 1.04-2.40; p=.03). Abdominal fat CSAs or muscle attenuation were not independently associated with mortality.
Conclusions: The presence of sarcopenia is associated with an increased risk of 1-year mortality for patients surgically treated for spinal metastases. Sarcopenia retained an independent association with mortality when controlling for the prognostic modified Bauer score. This implies that body composition measurements such as sarcopenia could serve as novel biomarkers for prediction of mortality and may supplement other existing prognostic tools to improve shared decision making for patients with spinal metastases that are contemplating surgical treatment.
Keywords: Adipose tissue; Body composition; Computed tomography (CT); Mortality; Predictor; Sarcopenia; Spinal metastases; Surgery.
Copyright © 2021 Elsevier Inc. All rights reserved.