Male infertility may be caused by genetic and/or environmental factors that impair spermatogenesis and sperm maturation. High-altitude (HA) hypoxic environments represent one of the most serious challenges faced by humans that reside in these areas. To assess the influence of the plateau environment on semen parameters, 2,798 males, including 1,111 native Tibetans and 1,687 Han Chinese individuals living in the plains (HCILP) who underwent pre-pregnancy checkups, were enrolled in this study. The semen samples of males were evaluated to determine conventional sperm parameters, sperm morphology, and sperm movement. Reproductive endocrine hormones (REHs) were detected in 474 males, including 221 Tibetans and 253 HCILP. Due to recurrent abortions in partners, the DNA fragmentation index (DFI) of 133 native Tibetans and 393 HCILP individuals was further compared. Luteinizing hormone (LH) (4.94 ± 2.12 vs. 3.29 ± 1.43 U/L), prolactin (11.34 ± 3.87 vs. 8.97 ± 3.48 nmol/L), E2/T (0.22 ± 0.11 vs 0.11 ± 0.05), median total sperm motility (61.20% vs. 51.56%), and DFI (23.11% vs. 7.22%) were higher in males from plateau areas while median progressive motility (PR) (35.60% vs. 41.12%), total number of PR sperms (51.61 vs. 59.63 mil/ejaculate), percentage of normal form sperms (3.70% vs. 6.00%), curvilinear velocity (36.10 vs. 48.97 μm/s), straight-line (rectilinear) velocity (14.70 vs. 31.52 μm/s), estradiol (103.82 ± 45.92 vs. 146.01 ± 39.73 pmol/L), progesterone (0.29 ± 0.27 vs. 2.22 ± 0.84 nmol/L), testosterone (4.90 ± 1.96 vs. 14.36 ± 5.24 nmol/L), and testosterone secretion index (ratio of testosterone to LH) (33.45 ± 22.86 vs 145.78 ± 73.41) were lower than those in males from the plains. There was no difference in median total sperm number (157.76 vs. 151.65 mil/mL), sperm concentration (52.40 vs. 51.79 mil/mL), volume (3.10 vs. 3.10 mL), total normal form sperms (5.91 vs. 6.58 mil/ejaculate, p50), and follicle-stimulating hormone (FSH) levels (4.13 ± 2.55 U/L vs 3.82 ± 2.35 U/L) between the two groups of males. The REH and sperm parameters of males from HA hypoxic environments were adaptively altered. Although the total number of PR sperm decreased and DFI increased, the Tibetan population that lives at HAs has been found to grown continuously and rapidly. These results supplement prior findings regarding the impact of HA on male reproductive function.
Keywords: Asthenozoospermia; Male infertility; Normal forms; Plateau hypoxia; Sperm concentration; Sperm count.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.