Background: Exercise intolerance in systemic sclerosis (SSc) is typically attributed to cardiopulmonary limitations. However, problems with skeletal muscle oxygen extraction have not been fully investigated. This study used cardiovascular magnetic resonance (CMR)-augmented cardiopulmonary exercise testing (CMR-CPET) to simultaneously measure oxygen consumption and cardiac output. This allowed calculation of arteriovenous oxygen content gradient, a recognized marker of oxygen extraction. We performed CMR-CPET in 4 groups: systemic sclerosis (SSc); systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH); non-connective tissue disease pulmonary hypertension (NC-PAH); and healthy controls.
Methods: We performed CMR-CPET in 60 subjects (15 in each group) using a supine ergometer following a ramped exercise protocol until exhaustion. Values for oxygen consumption, cardiac output and oxygen content gradient, as well as ventricular volumes, were obtained at rest and peak-exercise for all subjects. In addition, T1 and T2 maps were acquired at rest, and the most recent clinical measures (hemoglobin, lung function, 6-min walk, cardiac and catheterization) were collected.
Results: All patient groups had reduced peak oxygen consumption compared to healthy controls (p < 0.022). The SSc and SSc-PAH groups had reduced peak oxygen content gradient compared to healthy controls (p < 0.03). Conversely, the SSc-PAH and NC-PH patients had reduced peak cardiac output compared to healthy controls and SSc patients (p < 0.006). Higher hemoglobin was associated with higher peak oxygen content gradient (p = 0.025) and higher myocardial T1 was associated with lower peak stroke volume (p = 0.011).
Conclusions: Reduced peak oxygen consumption in SSc patients is predominantly driven by reduced oxygen content gradient and in SSc-PAH patients this was amplified by reduced peak cardiac output. Trial registration The study is registered with ClinicalTrials.gov Protocol Registration and Results System (ClinicalTrials.gov ID: 100358).
Keywords: Cardiopulmonary exercise testing; Cardiovascular magnetic resonance; Connective tissue disease; Exercise; Pulmonary arterial hypertension; Systemic sclerosis.
© 2021. The Author(s).