High-rate biohydrogen production from xylose using a dynamic membrane bioreactor

Bioresour Technol. 2022 Jan;344(Pt A):126205. doi: 10.1016/j.biortech.2021.126205. Epub 2021 Oct 26.

Abstract

This study aimed a high-rate dark fermentative H2 production from xylose using a dynamic membrane module bioreactor (DMBR) with a 444-μm pore polyester mesh. 20 g xylose/L was fed continuously to the DMBR at different hydraulic retention times (HRTs) from 12 to 3 h at 37 °C. The maximum average H2 yield (HY) and H2 production rate (HPR) at 3 h HRT were found to be 1.40 ± 0.07 mol H2/mol xyloseconsumed and 30.26 ± 1.19 L H2/L-d, respectively. The short HRT resulted in the maximum suspended biomass concentration (8.92 ± 0.40 g VSS/L) along with significant attached biomass retention (7.88 ± 0.22 g VSS/L). H2 was produced by both butyric and acetic acid pathways. Low HY was concurrent with lactic acid production. The bacterial population shifted from non-H2 producers, such as Lactobacillus and Sporolactobacillus spp., to Clostridium sp., when HY increased. Thus, xylose from lignocellulose is a feasible substrate for dark fermentative H2 production using DMBR.

Keywords: Biohydrogen; Dark fermentation; Dynamic membrane module bioreacotor; Lignocellulosic biomass; Microbial community.

MeSH terms

  • Bioreactors
  • Clostridium
  • Fermentation
  • Hydrogen*
  • Xylose*

Substances

  • Hydrogen
  • Xylose