Pathogenic bacteria can cause the outbreaks of disease and threaten human health, which stimulates the development of advanced detection techniques. Herein, a specific and sensitive electrochemical biosensor for Gram-negative bacteria was established based on the conductive polymer with artificial muscle properties. The effective recognition was achieved through the specific carbohydrate-carbohydrate interaction between gluconamide and lipopolysaccharide. The application of impulse voltage enhances the efficiency of recognition and shortens the detection time through the temporary deformation of the electrode surface, with a limit of detection (LOD) of 1 × 100 CFU/mL and a linear range of 1 × 100 - 1 × 106 CFU/mL for Escherichia coli (E. coli). In addition to the merits of low cost, high efficiency, and rapidity, the developed label-free electrochemical biosensor can also be applicable for other Gram-negative bacteria, owning promising potential in the application of portable devices and paving a potential way for the construction of electrochemical biosensors.
Keywords: Conductive polymer; Electrochemical impedance spectroscopy; Gluconamide; Lipopolysaccharides; Pulse-induced biosensor.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.