Characterization and proteomics of chicken seminal plasma extracellular vesicles

Reprod Domest Anim. 2022 Jan;57(1):98-110. doi: 10.1111/rda.14033. Epub 2021 Nov 12.

Abstract

In mammals, seminal plasma extracellular vesicles (SPEVs) can regulate sperm motility and capacitation. The characteristics and functions of SPEVs in avians have been rarely reported. In this study, chicken SPEVs were isolated and characterized by transmission and scanning electron microscopy (TEM/SEM) and nanoparticle tracking analysis (NTA); furthermore, seven extracellular vesicle (EVs) marker proteins were detected by Western blot (WB). TEM revealed that chicken SPEVs had a classic bilayer membrane structure. NTA confirmed that the size of SPEVs was 30-250 nm, and concentration ranged from 8.0 E + 11-8.5 E + 11 particles/ml. There were 3073 SPEVs proteins identified by deep sequencing, including 2794 intracellular proteins and 279 extracellular proteins. The overlap rate of proteomes between chicken SPEVs and vesicles reported in the Vesiclepedia database reached 86%, and 360 new proteins that had not been reported by the ExoCarta and Vesiclepedia databases were identified in chicken SPEV proteomes. Gene Ontology (GO) analysis revealed that chicken SPEV proteins were mainly enriched in supplying energy and transporting protein. There were 4 IFT family proteins speculated to play an important role in sperm composition and function. Our data were compared with two previously published studies on the proteomics of chicken seminal plasma (SP) and hen uterine fluid, and some overlapping proteins described in chicken SPEVs had been identified in hen uterine fluid (545) and chicken SP (284). In conclusion, these findings will increase our understanding of the content and composition of proteome in SPEVs and provide new insights into the important role of the SPEV regulation in sperm functions.

Keywords: chicken; extracellular vesicles; proteome; seminal plasma.

MeSH terms

  • Animals
  • Chickens
  • Extracellular Vesicles*
  • Female
  • Male
  • Proteomics*
  • Semen
  • Sperm Motility