In the present study, a series of 2-phenyl-1H-benzo[d]imidazole-based α-glucosidase inhibitors were synthesized and evaluated for their in vitro and in vivo anti-diabetic potential. Screening of an in-house library revealed a moderated α-glucosidase inhibitor, 6a with 3-(1H-benzo[d]imidazol-2-yl)aniline core, and then the structural optimization was performed to obtain more efficient derivatives. Most of these derivatives showed increased activity than 6a, and the most promising inhibitors were found to be compounds 15o and 22d with IC50 values of 2.09 ± 0.04 and 0.71 ± 0.02 µM, respectively. Fluorescence quenching experiment confirmed the direct binding of compounds 15o and 22d with α-glucosidase. Kinetic study revealed that both compounds were non-competitive inhibitors, that was consistent with the result of molecular docking studies where they located at the allosteric site of the enzyme. Cell viability evaluation demonstrated the non-cytotoxicity of 15o and 22d against LO2 cells. Furthermore, the in vivo pharmacodynamic study revealed that compound 15o showed significant hypoglycemic activity and improved oral sucrose tolerance, comparable to the positive control acarbose.
Keywords: 2-Phenyl-1H-benzo[d]imidazole derivatives; Fluorescence quenching; Hypoglycemic activity; Kinetic study; Molecular docking; α-glucosidase inhibitor.
Copyright © 2021 Elsevier Inc. All rights reserved.