Purpose: Clinical indicators of histological information are important for breast cancer treatment and operational decision making, but these histological data suffer from frequent missing values due to various experimental/clinical reasons. The limited amount of histological information from breast cancer samples impedes the accuracy of data imputation. The purpose of this study was to impute missing histological data, including Ki-67 expression level, luminal A subtype, and histological grade, by integrating tumor radiomics.
Methods: To this end, a deep matrix completion (DMC) method was proposed for imputing missing histological data using nonmissing features composed of histological and tumor radiomics (termed radiohistological features). DMC finds a latent nonlinear association between radiohistological features across all samples and samples for all the features. Radiomic features of morphologic, statistical, and texture were extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) inside the tumor. Experiments on missing histological data imputation were performed with a variable number of features and missing data rates. The performance of the DMC method was compared with those of the nonnegative matrix factorization (NMF) and collaborative filtering (MCF)-based data imputation methods. The area under the curve (AUC) was used to assess the performance of missing histological data imputation.
Results: By integrating radiomics from DCE-MRI, the DMC method showed significantly better performance in terms of AUC than that using only histological data. Additionally, DMC using 120 radiomic features showed an optimal prediction performance (AUC = 0.793), which was better than the NMF (AUC = 0.756) and MCF methods (AUC = 0.706; corrected p = 0.001). The DMC method consistently performed better than the NMF and MCF methods with a variable number of radiomic features and missing data rates.
Conclusions: DMC improves imputation performance by integrating tumor histological and radiomics data. This study transforms latent imaging-scale patterns for interactions with molecular-scale histological information and is promising in the tumor characterization and management of patients.
Keywords: deep matrix factorization; histological information; missing value imputation; radiomics.
© 2021 American Association of Physicists in Medicine.