Enhanced activity for reduction of 4-nitrophenol of Ni/single-walled carbon nanotube prepared by super-growth method

Nanotechnology. 2021 Nov 19;33(6). doi: 10.1088/1361-6528/ac353f.

Abstract

In this study, we synthesised the Ni/single-walled carbon nanotube prepared by the super-growth method (SG-SWCNTs). In this approach, the Ni nanoparticles were immobilised by an impregnation method using the SG-SWCNTs with high specific surface areas (1144 m2g-1). The scanning electron microscopy images confirmed that the SG-SWCNTs exhibit the fibriform morphology corresponding to the carbon nanotubes. In addition, component analysis of the obtained samples clarified that the Ni nanoparticles were immobilised on the surface of the SG-SWCNTs. Next, we evaluated the activity for the reduction of 4-nitoropenol in the presence of the Ni/SG-SWCNTs. Additionally, the Ni/graphene, which was obtained by the same synthetic method, was utilised in this reaction. The rate of reaction activity of the Ni/SG-SWCNTs finished faster than that of the Ni/GPs. From this result, the pseudo-first-order kinetic rate constantkfor the Ni/SG-SWCNTs and the Ni/GPs was calculated respectively at 0.083 and 0.070 min-1, indicating that the Ni/SG-SWCNTs exhibits higher activity.

Keywords: high specific surface area; reduction of 4-nitrophenol; single-walled carbon nanotube; supported Ni catalysts.