Nitric oxide (NO) is one of the smallest gas molecules with pharmaceutical and potential wound therapeutic effects due to its ability to regulate inflammation and eradicate bacterial infections. Recently, NO-releasing synthetic polymer-based nanofibers have become promising candidates for wound healing due to their facile functionalisation, tunable mechanical properties, and large effective surface areas. However, synthetic polymer-based nanofibers suffer from poor degradability in the physiological milieu, which restricts their use in in vivo applications. In this study, we developed biodegradable and nitric oxide-releasing nanofibers for potential wound healing applications. We synthesised dual-functionalised hyaluronic acid (HA) containing methacrylate groups and N-diazeniumdiolate (NONOate)-NO donor groups and capable of forming crosslinked, electrospun nanofibers, with an effective NO payload, through an electrospinning process and photoinitiated polymerisation. Nuclear magnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy confirmed the successful synthesis of the functionalised HA. Control over both the NO donor and HA concentrations allowed for the preparation of NO-releasing, HA-based nanofibers of varying diameters (240-490 nm), NO payloads (10-620 nmol mg-1), maximum amounts of NO released (160-8920 ppb mg-1), and NO release durations (1.5-20.2 h). Moreover, the NO-releasing nanofibers had good biodegradability and potential wound healing effects without any observed cytotoxicity. The biodegradable and NO-releasing HA-based nanofibers developed in this study have the potential application in wound healing.