Current studies regarding the effect of different nitrogen sources on gut microbiota have thus far disregarded the ability of probiotics and coliforms to compete for protein. This study aimed to investigate the differences in the utilization of soybean protein (SPro) and its derived peptides (SPep) by the gut microbiota of Sprague Dawley (SD) rats. The SPro and SPep prepared in this study showed extensive SPro molecular weight distribution, while that of SPep was minimal, ranging between 150 and 1000 Da and primarily consisting of two to five amino acids. The cecum microflora composition of the rats was determined via 16S rDNA amplicon sequencing, showing that the SPro and SPep significantly increased the abundance and uniformity of the gut microbiota after 35 days of feeding. The Firmicutes/Bacteroidetes (F/B) ratios of the SPep, SPro, and casein groups were 2.49 ± 0.60, 2.98 ± 1.12, and 2.59 ± 0.74, respectively. Although the rats fed with SPro and SPep displayed similar gut microbiome structures, SPep significantly promoted Lactobacillus and Phascolarctobacterium growth. The results showed that SPep significantly increased the diversity of the gut microbiota and elevated the probiotic proportion. PRACTICAL APPLICATION: SPro and SPep are two nutritious and high-quality nitrogen sources. The results showed that SPro and SPep regulated the structure of gut microbiota in rats, and the effect of SPep was better. This study provides a theoretical basis for developing SPep functional foods able to regulate gut microbiota and maintain health.
Keywords: gut microbiota; nitrogen source; soybean peptides; soybean protein.
© 2021 Institute of Food Technologists®.