"Omics" techniques (including genomics, transcriptomics, metabolomics, proteomics, and metagenomics) have been employed with huge success in the improvement of agricultural crops. As marine aquaculture of macroalgae expands globally, biologists are working to domesticate species of macroalgae by applying these techniques tested in agriculture to wild macroalgae species. Metabolomics has revealed metabolites and pathways that influence agriculturally relevant traits in crops, allowing for informed crop crossing schemes and genomic improvement strategies that would be pivotal to inform selection on macroalgae for domestication. Advances in metagenomics have improved understanding of host-symbiont interactions and the potential for microbial organisms to improve crop outcomes. There is much room in the field of macroalgal biology for further research toward improvement of macroalgae cultivars in aquaculture using metabolomic and metagenomic analyses. To this end, this review discusses the application and necessary expansion of the omics tool kit for macroalgae domestication as we move to enhance seaweed farming worldwide.
Keywords: aquaculture; domestication; gene regulatory networks; macroalgae; marine; metabolome; metagenome; metagenomics; metatranscriptomics; phenotype; structural equation modeling.