Non-small cell lung cancer (NSCLC) is one of the most malignant cancer types. N6-methyladenosine (m6A), an abundant eukaryotic mRNA modification, has been observed in multiple diseases, particularly cancer. Methyltransferase-like 14 (METTL14) is a central component of the m6A methyltransferase complex and has been reported to promote tumor development in several cancer types. The present study aimed to investigate the role of METTL14 in NSCLC. Relevant clinical and mRNA sequencing data for m6A-related genes were downloaded from The Cancer Genome Atlas database. R software was used to evaluate the expression of m6A regulators in NSCLC. The biological functions of METTL14 were evaluated using Cell Counting Kit-8, colony formation, Transwell migration and western blot analyses. The results demonstrated that METTL14 expression was upregulated in NSCLC tissues and cell lines, and its expression was high in cancer tissues from patients with NSCLC with all four stages (I, II, III and IV) of disease. METTL14 downregulation inhibited cell proliferation and migration in A549 and SK-MES-1 lung cancer cell lines. Knockdown of METTL14 in lung cancer cell lines increased E-cadherin expression and suppressed N-cadherin expression. Furthermore, METTL14 downregulation reduced the expression levels of the transcription factor Twist and the p-AKT/AKT ratio. In conclusion, the present findings revealed that silencing of METTL14 suppressed NSCLC malignancy by inhibiting Twist-mediated activation of AKT signaling. These data suggest that METTL14 may be a potential therapeutic target for NSCLC.
Keywords: Twist; epithelial-mesenchymal transition; methyltransferase-like 14; non-small cell lung cancer.
Copyright: © Yang et al.