ACY1 regulating PTEN/PI3K/AKT signaling in the promotion of non-small cell lung cancer progression

Ann Transl Med. 2021 Sep;9(17):1378. doi: 10.21037/atm-21-3127.

Abstract

Background: Non-small cell lung cancer (NSCLC) has a poor prognosis and is the most common cause of cancer-related deaths worldwide. Aminoacylase 1 (ACY1) plays a promoting role in some cancers, but its role in NSCLC is still unclear.

Methods: Immunohistochemistry, Reverse transcription-polymerase chain reaction (RT-PCR) and western blotting assays were used to determine ACY1 expression patterns in NSCLC tissues and cell lines. The clinical significance of ACY1 in NSCLC was evaluated by χ2 test and Kaplan-Meier analysis. MTT, flow cytometry, wound healing, and Transwell assays were performed to assess cell growth, apoptosis, migration, invasion, and tumorigenesis under different treatments. Male athymic BALB/C nude mice were used for xenotransplantation experiments.

Results: The results showed that ACY1 expression was elevated in NSCLC tissue samples and cells, and high ACY1 expression predicted an advanced clinical process and shorter overall survival in patients with NSCLC. Overexpression of ACY1 significantly increased cell growth, migration, invasion, and tumorigenesis, and reduced cell apoptosis, indicating that ACY1 functions as an oncogene in NSCLC. Moreover, ACY1 decreased phosphatase and tensin homolog (PTEN) expression, increased its ubiquitination, and activated PI3K/AKT signaling. Overexpression of PTEN diminished the effects of ACY1 upregulation on cell tumorigenesis promotion.

Conclusions: This study reveals that ACY1 may promote the progression of NSCLC via activating PI3K/AKT signaling in a PTEN-dependent manner. Our study may provide a better understanding of the pathogenesis and development of NSCLC.

Keywords: Aminoacylase 1 (ACY1); PI3K/AKT; non-small cell lung cancer (NSCLC); phosphatase and tensin homolog (PTEN).