Objectifying clinical gait assessment: using a single-point wearable sensor to quantify the spatiotemporal gait metrics of people with lumbar spinal stenosis

J Spine Surg. 2021 Sep;7(3):254-268. doi: 10.21037/jss-21-16.

Abstract

Background: Wearable accelerometer-containing devices have become a mainstay in clinical studies which attempt to classify the gait patterns in various diseases. A gait profile for lumbar spinal stenosis (LSS) has not been developed, and no study has validated a simple wearable system for the clinical assessment of gait in lumbar stenosis. This study identifies the changes to gait patterns that occur in LSS to create a preliminary disease-specific gait profile. In addition, this study compares a chest-based wearable sensor, the MetaMotionC© device and inertial measurement unit python script (MMC/IMUPY) system, against a reference-standard, videography, to preliminarily assess its accuracy in measuring the gait features of patients with LSS.

Methods: We conduct a cross-sectional observational study examining the walking patterns of 25 LSS patients and 33 healthy controls. To construct a preliminary disease-specific gait profile for LSS, the gait patterns of the 25 LSS patients and 25 healthy controls with similar ages were compared. To assess the accuracy of the MMC/IMUPY system in measuring the gait features of patients with LSS, its results were compared with videography for the 21 LSS and 33 healthy controls whose walking bouts exceeded 30 m.

Results: Patients suffering from LSS walked significantly slower, with shorter, less frequent steps and higher asymmetry compared to healthy controls. The MMC/IMUPY system had >90% agreement with videography for all spatiotemporal gait metrics that both methods could measure.

Conclusions: The MMC/IMUPY system is a simple and feasible system for the construction of a preliminary disease-specific gait profile for LSS. Before clinical application in everyday living conditions is possible, further studies involving the construction of a more detailed disease-specific gait profile for LSS by disease severity, and the validation of the MMC/IMUPY system in the home environment, are required.

Keywords: Lumbar spinal stenosis (LSS); accelerometry; gait; wearable.