Objectives: To compare the added value of diffusion kurtosis imaging (DKI) with the combination of dynamic susceptibility contrast-enhanced (DSC) MRI in differentiating glioma recurrence from pseudoprogression.
Methods: Thirty-four patients with high-grade gliomas developing new and/or increasing enhanced lesions within six months after surgery and chemoradiotherapy were retrospectively analyzed. All patients were pathologically confirmed to have recurrent glioma (n = 22) or pseudoprogression (n = 12). The DKI and DSC MRI parameters were calculated based on the enhanced lesions on contrast-enhanced T1WI. ROC analysis was performed on significant variables to determine their diagnostic performance. Multivariate logistic regression was used to determine the best prediction model for discrimination.
Results: The relative mean kurtosis (rMK), relative axial kurtosis (rKa), relative cerebral blood volume (rCBV), and relative mean transit time (rMTT) of glioma recurrence were higher than those of pseudoprogression (all, P < 0.05). The AUCs and diagnostic accuracy were 0.879 and 82.35% for rMK, 0.723 and 70.59% for rKa, 0.890 and 82.35% for rCBV, 0.765 and 73.53% for rMTT, respectively. A multivariate logistic regression model showed a significant contribution of rMK (P = 0.006) and rCBV (P = 0.009) as independent imaging classifiers for discrimination. The combined use of rMK and rCBV improved the AUC to 0.924 (P < 0.001) and the diagnostic accuracy to 88.24%.
Conclusion: DKI may be a valuable non-invasive tool in differentiating glioma recurrence from pseudoprogression, and its use in combination with DSC MRI can improve diagnostic performance in assessing treatment response compared with either technique alone.
Keywords: Diffusion kurtosis imaging (DKI); Dynamic susceptibility contrast-enhanced (DSC) MRI; Glioma; Pseudoprogression; Recurrence.
Copyright © 2021. Published by Elsevier B.V.