Although purely organic room-temperature phosphorescence (RTP) has drawn widespread attention in recent years, regulatable phosphorescence resonance energy transfer (PRET) supramolecular switch is still rare. Herein, single molecular dual-fold supramolecular light switches, which are constructed by phenylpyridinium salts modified diarylethene derivatives (DTE-Cn, n = 3, 5) and cucurbit[8]uril (CB[8]) are reported. Significantly, biaxial [3]pseudorotaxane displayed efficiently reversible RTP after binding with CB[8] and the phosphorescence quenching efficiency is calculated up to be 99%. Furthermore, the binary supramolecular assembly can coassemble with Cy5 to form ternary supramolecular assembly showing efficiently PRET, which is successfully applied in switchable near infrared (NIR) mitochondria-targeted cell imaging and photocontrolled data encryption. This supramolecular strategy involving energy transfer provides a convenient approach for phosphorescent application in biology and material fields.
Keywords: NIR; cell imaging; energy transfer; phosphorescence.
© 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.